Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 51 - 75 of 79 results
51.

Programming Bacteria With Light—Sensors and Applications in Synthetic Biology

blue cyan green near-infrared red UV violet Cobalamin-binding domains Cryptochromes Cyanobacteriochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Front Microbiol, 8 Nov 2018 DOI: 10.3389/fmicb.2018.02692 Link to full text
Abstract: Photo-receptors are widely present in both prokaryotic and eukaryotic cells, which serves as the foundation of tuning cell behaviors with light. While practices in eukaryotic cells have been relatively established, trials in bacterial cells have only been emerging in the past few years. A number of light sensors have been engineered in bacteria cells and most of them fall into the categories of two-component and one-component systems. Such a sensor toolbox has enabled practices in controlling synthetic circuits at the level of transcription and protein activity which is a major topic in synthetic biology, according to the central dogma. Additionally, engineered light sensors and practices of tuning synthetic circuits have served as a foundation for achieving light based real-time feedback control. Here, we review programming bacteria cells with light, introducing engineered light sensors in bacteria and their applications, including tuning synthetic circuits and achieving feedback controls over microbial cell culture.
52.

A compendium of chemical and genetic approaches to light-regulated gene transcription.

blue cyan green near-infrared red UV BLUF domains Cobalamin-binding domains Cryptochromes Cyanobacteriochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Crit Rev Biochem Mol Biol, 24 Jul 2018 DOI: 10.1080/10409238.2018.1487382 Link to full text
Abstract: On-cue regulation of gene transcription is an invaluable tool for the study of biological processes and the development and integration of next-generation therapeutics. Ideal reagents for the precise regulation of gene transcription should be nontoxic to the host system, highly tunable, and provide a high level of spatial and temporal control. Light, when coupled with protein or small molecule-linked photoresponsive elements, presents an attractive means of meeting the demands of an ideal system for regulating gene transcription. In this review, we cover recent developments in the burgeoning field of light-regulated gene transcription, covering both genetically encoded and small-molecule based strategies for optical regulation of transcription during the period 2012 till present.
53.

Optogenetic regulation of transcription.

blue green near-infrared red Cryptochromes Cyanobacteriochromes LOV domains Phytochromes Review
BMC Neurosci, 19 Apr 2018 DOI: 10.1186/s12868-018-0411-6 Link to full text
Abstract: Optogenetics has become widely recognized for its success in real-time control of brain neurons by utilizing nonmammalian photosensitive proteins to open or close membrane channels. Here we review a less well known type of optogenetic constructs that employs photosensitive proteins to transduce the signal to regulate gene transcription, and its possible use in medicine. One of the problems with existing gene therapies is that they could remain active indefnitely while not allowing regulated transgene production on demand. Optogenetic regulation of transcription (ORT) could potentially be used to regulate the production of a biological drug in situ, by repeatedly applying light to the tissue, and inducing expression of therapeutic transgenes when needed. Red and near infrared wavelengths, which are capable of penetration into tissues, have potential for therapeutic applications. Existing ORT systems are reviewed herein with these considerations in mind.
54.

A miniaturized E. coli green light sensor with high dynamic range.

green CcaS/CcaR E. coli
Chembiochem, 8 Feb 2018 DOI: 10.1002/cbic.201800007 Link to full text
Abstract: Genetically-engineered photoreceptors enable unrivaled control over gene expression. Previously, we ported the Synechocystis PCC 6803 CcaSR two-component system, which is activated by green light and de-activated by red, into E. coli, resulting in a sensor with 6-fold dynamic range. Later, we optimized pathway protein expression levels and the output promoter sequence to decrease transcriptional leakiness and increase the dynamic range to approximately 120-fold. These CcaSR v1.0 and 2.0 systems have been used for precise quantitative, temporal, and spatial control of gene expression for a variety of applications. Recently, others have deleted two PAS domains of unknown function from the CcaS sensor histidine kinase in a CcaSR v1.0-like system. Here, we apply these deletions to CcaSR v2.0, resulting in a v3.0 light sensor with 4-fold lower leaky output and nearly 600-fold dynamic range. We demonstrate that the PAS domain deletions have no deleterious effect on CcaSR green light sensitivity or response dynamics. CcaSR v3.0 is the best performing engineered bacterial green light sensor available, and should have broad applications in fundamental and synthetic biology studies.
55.

A novel optogenetically tunable frequency modulating oscillator.

green violet CcaS/CcaR UirS/UirR in silico
PLoS ONE, 1 Feb 2018 DOI: 10.1371/journal.pone.0183242 Link to full text
Abstract: Synthetic biology has enabled the creation of biological reconfigurable circuits, which perform multiple functions monopolizing a single biological machine; Such a system can switch between different behaviours in response to environmental cues. Previous work has demonstrated switchable dynamical behaviour employing reconfigurable logic gate genetic networks. Here we describe a computational framework for reconfigurable circuits in E.coli using combinations of logic gates, and also propose the biological implementation. The proposed system is an oscillator that can exhibit tunability of frequency and amplitude of oscillations. Further, the frequency of operation can be changed optogenetically. Insilico analysis revealed that two-component light systems, in response to light within a frequency range, can be used for modulating the frequency of the oscillator or stopping the oscillations altogether. Computational modelling reveals that mixing two colonies of E.coli oscillating at different frequencies generates spatial beat patterns. Further, we show that these oscillations more robustly respond to input perturbations compared to the base oscillator, to which the proposed oscillator is a modification. Compared to the base oscillator, the proposed system shows faster synchronization in a colony of cells for a larger region of the parameter space. Additionally, the proposed oscillator also exhibits lesser synchronization error in the transient period after input perturbations. This provides a strong basis for the construction of synthetic reconfigurable circuits in bacteria and other organisms, which can be scaled up to perform functions in the field of time dependent drug delivery with tunable dosages, and sets the stage for further development of circuits with synchronized population level behaviour.
56.

Shaping bacterial population behavior through computer-interfaced control of individual cells.

green CcaS/CcaR E. coli
Nat Commun, 16 Nov 2017 DOI: 10.1038/s41467-017-01683-1 Link to full text
Abstract: Bacteria in groups vary individually, and interact with other bacteria and the environment to produce population-level patterns of gene expression. Investigating such behavior in detail requires measuring and controlling populations at the single-cell level alongside precisely specified interactions and environmental characteristics. Here we present an automated, programmable platform that combines image-based gene expression and growth measurements with on-line optogenetic expression control for hundreds of individual Escherichia coli cells over days, in a dynamically adjustable environment. This integrated platform broadly enables experiments that bridge individual and population behaviors. We demonstrate: (i) population structuring by independent closed-loop control of gene expression in many individual cells, (ii) cell-cell variation control during antibiotic perturbation, (iii) hybrid bio-digital circuits in single cells, and freely specifiable digital communication between individual bacteria. These examples showcase the potential for real-time integration of theoretical models with measurement and control of many individual cells to investigate and engineer microbial population behavior.
57.

Mini Photobioreactors for in Vivo Real-Time Characterization and Evolutionary Tuning of Bacterial Optogenetic Circuit.

green CcaS/CcaR E. coli
ACS Synth Biol, 5 Jun 2017 DOI: 10.1021/acssynbio.7b00091 Link to full text
Abstract: The current standard protocols for characterizing the optogenetic circuit of bacterial cells using flow cytometry in light tubes and light exposure of culture plates are tedious, labor-intensive, and cumbersome. In this work, we engineer a bioreactor with working volume of ∼10 mL for in vivo real-time optogenetic characterization of E. coli with a CcaS-CcaR light-sensing system. In the bioreactor, optical density measurements, reporter protein fluorescence detection, and light input stimuli are provided by four light-emitting diode sources and two photodetectors. Once calibrated, the device can cultivate microbial cells and record their growth and gene expression without human intervention. We measure gene expression during cell growth with different organic substrates (glucose, succinate, acetate, pyruvate) as carbon sources in minimal medium and demonstrate evolutionary tuning of the optogenetic circuit by serial dilution passages.
58.

Engineering RGB color vision into Escherichia coli.

blue green red CcaS/CcaR Cph1 YtvA E. coli Multichromatic
Nat Chem Biol, 22 May 2017 DOI: 10.1038/nchembio.2390 Link to full text
Abstract: Optogenetic tools use colored light to rapidly control gene expression in space and time. We designed a genetically encoded system that gives Escherichia coli the ability to distinguish between red, green, and blue (RGB) light and respond by changing gene expression. We use this system to produce 'color photographs' on bacterial culture plates by controlling pigment production and to redirect metabolic flux by expressing CRISPRi guide RNAs.
59.

Distinctive Properties of Dark Reversion Kinetics between Two Red/Green-Type Cyanobacteriochromes and their Application in the Photoregulation of cAMP Synthesis.

violet Cyanobacteriochromes Background
Photochem Photobiol, May 2017 DOI: 10.1111/php.12732 Link to full text
Abstract: Cyanobacteriochromes (CBCRs) are photoreceptors that bind to a linear tetrapyrrole within a conserved cGMP-phosphodiesterase/adenylate cyclase/FhlA (GAF) domain and exhibit reversible photoconversion. Red/green-type CBCR GAF domains that photoconvert between red- (Pr) and green-absorbing (Pg) forms occur widely in various cyanobacteria. A putative phototaxis regulator, AnPixJ, contains multiple red/green-type CBCR GAF domains. We previously reported that AnPixJ's second domain (AnPixJg2) but not its fourth domain (AnPixJg4) shows red/green reversible photoconversion. Herein, we found that AnPixJg4 showed Pr-to-Pg photoconversion and rapid Pg-to-Pr dark reversion, whereas AnPixJg2 showed a barely detectable dark reversion. Site-directed mutagenesis revealed the involvement of six residues in Pg stability. Replacement at the Leu294/Ile660 positions of AnPixJg2/AnPixJg4 showed the highest influence on dark reversion kinetics. AnPixJg2_DR6, wherein the six residues of AnPixJg2 were entirely replaced with those of AnPixJg4, showed a 300-fold faster dark reversion than that of the wild type. We constructed chimeric proteins by fusing the GAF domains with adenylate cyclase catalytic regions, such as AnPixJg2-AC, AnPixJg4-AC and AnPixJg2_DR6-AC. We detected successful enzymatic activation under red light for both AnPixJg2-AC and AnPixJg2_DR6-AC, and repression under green light for AnPixJg2-AC and under dark incubation for AnPixJg2_DR6-AC. These results provide platforms to develop cAMP synthetic optogenetic tools.
60.

A photoconversion model for full spectral programming and multiplexing of optogenetic systems.

green red CcaS/CcaR Cph1 E. coli Multichromatic
Mol Syst Biol, 24 Apr 2017 DOI: 10.15252/msb.20167456 Link to full text
Abstract: Optogenetics combines externally applied light signals and genetically engineered photoreceptors to control cellular processes with unmatched precision. Here, we develop a mathematical model of wavelength- and intensity-dependent photoconversion, signaling, and output gene expression for our two previously engineered light-sensing Escherichia coli two-component systems. To parameterize the model, we develop a simple set of spectral and dynamical calibration experiments using our recent open-source "Light Plate Apparatus" device. In principle, the parameterized model should predict the gene expression response to any time-varying signal from any mixture of light sources with known spectra. We validate this capability experimentally using a suite of challenging light sources and signals very different from those used during the parameterization process. Furthermore, we use the model to compensate for significant spectral cross-reactivity inherent to the two sensors in order to develop a new method for programming two simultaneous and independent gene expression signals within the same cell. Our optogenetic multiplexing method will enable powerful new interrogations of how metabolic, signaling, and decision-making pathways integrate multiple input signals.
61.

An open-hardware platform for optogenetics and photobiology.

blue green red CcaS/CcaR CRY2/CIB1 PhyB/PIF6 E. coli HeLa S. cerevisiae
Sci Rep, 2 Nov 2016 DOI: 10.1038/srep35363 Link to full text
Abstract: In optogenetics, researchers use light and genetically encoded photoreceptors to control biological processes with unmatched precision. However, outside of neuroscience, the impact of optogenetics has been limited by a lack of user-friendly, flexible, accessible hardware. Here, we engineer the Light Plate Apparatus (LPA), a device that can deliver two independent 310 to 1550 nm light signals to each well of a 24-well plate with intensity control over three orders of magnitude and millisecond resolution. Signals are programmed using an intuitive web tool named Iris. All components can be purchased for under $400 and the device can be assembled and calibrated by a non-expert in one day. We use the LPA to precisely control gene expression from blue, green, and red light responsive optogenetic tools in bacteria, yeast, and mammalian cells and simplify the entrainment of cyanobacterial circadian rhythm. The LPA dramatically reduces the entry barrier to optogenetics and photobiology experiments.
62.

Automated optogenetic feedback control for precise and robust regulation of gene expression and cell growth.

green CcaS/CcaR E. coli
Nat Commun, 26 Aug 2016 DOI: 10.1038/ncomms12546 Link to full text
Abstract: Dynamic control of gene expression can have far-reaching implications for biotechnological applications and biological discovery. Thanks to the advantages of light, optogenetics has emerged as an ideal technology for this task. Current state-of-the-art methods for optical expression control fail to combine precision with repeatability and cannot withstand changing operating culture conditions. Here, we present a novel fully automatic experimental platform for the robust and precise long-term optogenetic regulation of protein production in liquid Escherichia coli cultures. Using a computer-controlled light-responsive two-component system, we accurately track prescribed dynamic green fluorescent protein expression profiles through the application of feedback control, and show that the system adapts to global perturbations such as nutrient and temperature changes. We demonstrate the efficacy and potential utility of our approach by placing a key metabolic enzyme under optogenetic control, thus enabling dynamic regulation of the culture growth rate with potential applications in bacterial physiology studies and biotechnology.
63.

Development of a light-regulated cell-recovery system for non-photosynthetic bacteria.

green CcaS/CcaR E. coli Transgene expression Control of cell-cell / cell-material interactions
Microb Cell Fact, 15 Feb 2016 DOI: 10.1186/s12934-016-0426-6 Link to full text
Abstract: Recent advances in the understanding of photosensing in biological systems have enabled the use of photoreceptors as novel genetic tools. Exploiting various photoreceptors that cyanobacteria possess, a green light-inducible gene expression system was previously developed for the regulation of gene expression in cyanobacteria. However, the applications of cyanobacterial photoreceptors are not limited to these bacteria but are also available for non-photosynthetic microorganisms by the coexpression of a cyanobacterial chromophore with a cyanobacteria-derived photosensing system. An Escherichia coli-derived self-aggregation system based on Antigen 43 (Ag43) has been shown to induce cell self-aggregation of various bacteria by exogenous introduction of the Ag43 gene.
64.

Refactoring and optimization of light-switchable Escherichia coli two-component systems.

green red CcaS/CcaR Cph1 E. coli
ACS Synth Biol, 11 Oct 2014 DOI: 10.1021/sb500273n Link to full text
Abstract: Light-switchable proteins enable unparalleled control of molecular biological processes in live organisms. Previously, we have engineered red/far-red and green/red photoreversible two-component signal transduction systems (TCSs) with transcriptional outputs in E. coli and used them to characterize and control synthetic gene circuits with exceptional quantitative, temporal, and spatial precision. However, the broad utility of these light sensors is limited by bulky DNA encoding, incompatibility with commonly used ligand-responsive transcription factors, leaky output in deactivating light, and less than 10-fold dynamic range. Here, we compress the four genes required for each TCS onto two streamlined plasmids and replace all chemically inducible and evolved promoters with constitutive, engineered versions. Additionally, we systematically optimize the expression of each sensor histidine kinase and response regulator, and redesign both pathway output promoters, resulting in low leakiness and 72- and 117-fold dynamic range, respectively. These second-generation light sensors can be used to program the expression of more genes over a wider range and can be more easily combined with additional plasmids or moved to different host strains. This work demonstrates that bacterial TCSs can be optimized to function as high-performance sensors for scientific and engineering applications.
65.

Optogenetic characterization methods overcome key challenges in synthetic and systems biology.

green red Cyanobacteriochromes Phytochromes Review
Nat Chem Biol, 17 Jun 2014 DOI: 10.1038/nchembio.1559 Link to full text
Abstract: Systems biologists aim to understand how organism-level processes, such as differentiation and multicellular development, are encoded in DNA. Conversely, synthetic biologists aim to program systems-level biological processes, such as engineered tissue growth, by writing artificial DNA sequences. To achieve their goals, these groups have adapted a hierarchical electrical engineering framework that can be applied in the forward direction to design complex biological systems or in the reverse direction to analyze evolved networks. Despite much progress, this framework has been limited by an inability to directly and dynamically characterize biological components in the varied contexts of living cells. Recently, two optogenetic methods for programming custom gene expression and protein localization signals have been developed and used to reveal fundamentally new information about biological components that respond to those signals. This basic dynamic characterization approach will be a major enabling technology in synthetic and systems biology.
66.

A green-light inducible lytic system for cyanobacterial cells.

green CcaS/CcaR Cyanobacteria Transgene expression Cell death
Biotechnol Biofuels, 9 Apr 2014 DOI: 10.1186/1754-6834-7-56 Link to full text
Abstract: Cyanobacteria are an attractive candidate for the production of biofuel because of their ability to capture carbon dioxide by photosynthesis and grow on non-arable land. However, because huge quantities of water are required for cultivation, strict water management is one of the greatest issues in algae- and cyanobacteria-based biofuel production. In this study, we aim to construct a lytic cyanobacterium that can be regulated by a physical signal (green-light illumination) for future use in the recovery of biofuel related compounds.
67.

Characterizing bacterial gene circuit dynamics with optically programmed gene expression signals.

green red CcaS/CcaR Cph1 E. coli
Nat Methods, 9 Mar 2014 DOI: 10.1038/nmeth.2884 Link to full text
Abstract: Gene circuits are dynamical systems that regulate cellular behaviors, often using protein signals as inputs and outputs. Here we have developed an optogenetic 'function generator' method for programming tailor-made gene expression signals in live bacterial cells. We designed precomputed light sequences based on experimentally calibrated mathematical models of light-switchable two-component systems and used them to drive intracellular protein levels to match user-defined reference time courses. We used this approach to generate accelerated and linearized dynamics, sinusoidal oscillations with desired amplitudes and periods, and a complex waveform, all with unprecedented accuracy and precision. We also combined the function generator with a dual fluorescent protein reporter system, analogous to a dual-channel oscilloscope, to reveal that a synthetic repressible promoter linearly transforms repressor signals with an approximate 7-min delay. Our approach will enable a new generation of dynamical analyses of synthetic and natural gene circuits, providing an essential step toward the predictive design and rigorous understanding of biological systems.
68.

Engineering of a green-light inducible gene expression system in Synechocystis sp. PCC6803.

green CcaS/CcaR Cyanobacteria
Microb Biotechnol, 12 Dec 2013 DOI: 10.1111/1751-7915.12098 Link to full text
Abstract: In order to construct a green-light-regulated gene expression system for cyanobacteria, we characterized a green-light sensing system derived from Synechocystis sp. PCC6803, consisting of the green-light sensing histidine kinase CcaS, the cognate response regulator CcaR, and the promoter of cpcG2 (PcpcG 2 ). CcaS and CcaR act as a genetic controller and activate gene expression from PcpcG 2 with green-light illumination. The green-light induction level of the native PcpcG 2 was investigated using GFPuv as a reporter gene inserted in a broad-host-range vector. A clear induction of protein expression from native PcpcG 2 under green-light illumination was observed; however, the expression level was very low compared with Ptrc , which was reported to act as a constitutive promoter in cyanobacteria. Therefore, a Shine-Dalgarno-like sequence derived from the cpcB gene was inserted in the 5' untranslated region of the cpcG2 gene, and the expression level of CcaR was increased. Thus, constructed engineered green-light sensing system resulted in about 40-fold higher protein expression than with the wild-type promoter with a high ON/OFF ratio under green-light illumination. The engineered green-light gene expression system would be a useful genetic tool for controlling gene expression in the emergent cyanobacterial bioprocesses.
69.

Red/green cyanobacteriochromes: sensors of color and power.

violet Cyanobacteriochromes Background
Biochemistry, 21 Nov 2012 DOI: 10.1021/bi3013565 Link to full text
Abstract: Phytochromes are red/far-red photoreceptors using cysteine-linked linear tetrapyrrole (bilin) chromophores to regulate biological responses to light. Light absorption triggers photoisomerization of the bilin between the 15Z and 15E photostates. The related cyanobacteriochromes (CBCRs) extend the photosensory range of the phytochrome superfamily to shorter wavelengths of visible light. Several subfamilies of CBCRs have been described. Representatives of one such subfamily, including AnPixJ and NpR6012g4, exhibit red/green photocycles in which the 15Z photostate is red-absorbing like that of phytochrome but the 15E photoproduct is instead green-absorbing. Using recombinant expression of individual CBCR domains in Escherichia coli, we fully survey the red/green subfamily from the cyanobacterium Nostoc punctiforme. In addition to 14 new photoswitching CBCRs, one apparently photochemically inactive protein exhibiting intense red fluorescence was observed. We describe a novel orange/green photocycle in one of these CBCRs, NpF2164g7. Dark reversion varied in this panel of CBCRs; some examples were stable as the 15E photoproduct for days, while others reverted to the 15Z dark state in minutes or even seconds. In the case of NpF2164g7, dark reversion was so rapid that reverse photoconversion of the green-absorbing photoproduct was not significant in restoring the dark state, resulting in a broadband response to light. Our results demonstrate that red/green CBCRs can thus act as sensors for the color or intensity of the ambient light environment.
70.

Light-controlled synthetic gene circuits.

blue green red Cyanobacteriochromes LOV domains Phytochromes Review
Curr Opin Chem Biol, 25 May 2012 DOI: 10.1016/j.cbpa.2012.04.010 Link to full text
Abstract: Highly complex synthetic gene circuits have been engineered in living organisms to develop systems with new biological properties. A precise trigger to activate or deactivate these complex systems is desired in order to tightly control different parts of a synthetic or natural network. Light represents an excellent tool to achieve this goal as it can be regulated in timing, location, intensity, and wavelength, which allows for precise spatiotemporal control over genetic circuits. Recently, light has been used as a trigger to control the biological function of small molecules, oligonucleotides, and proteins involved as parts in gene circuits. Light activation has enabled the construction of unique systems in living organisms such as band-pass filters and edge-detectors in bacterial cells. Additionally, light also allows for the regulation of intermediate steps of complex dynamic pathways in mammalian cells such as those involved in kinase networks. Herein we describe recent advancements in the area of light-controlled synthetic networks.
71.

Phycoviolobilin formation and spectral tuning in the DXCF cyanobacteriochrome subfamily.

violet Cyanobacteriochromes Background
Biochemistry, 8 Feb 2012 DOI: 10.1021/bi201783j Link to full text
Abstract: Phytochromes are red/far-red photosensory proteins that regulate adaptive responses to light via photoswitching of cysteine-linked linear tetrapyrrole (bilin) chromophores. The related cyanobacteriochromes (CBCRs) extend the photosensory range of the phytochrome superfamily to shorter wavelengths of visible light. CBCRs and phytochromes share a conserved Cys residue required for bilin attachment. In one CBCR subfamily, often associated with a blue/green photocycle, a second Cys lies within a conserved Asp-Xaa-Cys-Phe (DXCF) motif and is essential for the blue/green photocycle. Such DXCF CBCRs use isomerization of the phycocyanobilin (PCB) chromophore into the related phycoviolobilin (PVB) to shorten the conjugated system for sensing green light. We here use recombinant expression of individual CBCR domains in Escherichia coli to survey the DXCF subfamily from the cyanobacterium Nostoc punctiforme. We describe ten new photoreceptors with well-resolved photocycles and three additional photoproteins with overlapping dark-adapted and photoproduct states. We show that the ability of this subfamily to form PVB or retain PCB provides a powerful mechanism for tuning the photoproduct absorbance, with blue-absorbing dark states leading to a broad range of photoproducts absorbing teal, green, yellow, or orange light. Moreover, we use a novel green/teal CBCR that lacks the blue-absorbing dark state to demonstrate that PVB formation requires the DXCF Cys residue. Our results demonstrate that this subfamily exhibits much more spectral diversity than had been previously appreciated.
72.

The use of light for engineered control and reprogramming of cellular functions.

blue green red Cryptochromes Cyanobacteriochromes LOV domains Phytochromes Review
Curr Opin Biotechnol, 26 Dec 2011 DOI: 10.1016/j.copbio.2011.12.004 Link to full text
Abstract: Could combating incurable diseases lie in something as simple as light? This scenario might not be too farfetched due to groundbreaking research in optogenetics. This novel scientific area, where genetically encoded photosensors transform light energy into specifically engineered biological processes, has shown enormous potential. Cell morphology can be changed, signaling pathways can be reprogrammed, and gene expression can be regulated all by the control of light. In biomedical applications where precise cell targeting is essential, non-invasive light has shown great promise. This article provides a summary of the recent advances that utilize light in genetic programming and precise control of engineered biological functions.
73.

Photophysical diversity of two novel cyanobacteriochromes with phycocyanobilin chromophores: photochemistry and dark reversion kinetics.

violet Cyanobacteriochromes Background
FEBS J, 11 Nov 2011 DOI: 10.1111/j.1742-4658.2011.08397.x Link to full text
Abstract: Cyanobacteriochromes are phytochrome homologues in cyanobacteria that act as sensory photoreceptors. We compare two cyanobacteriochromes, RGS (coded by slr1393) from Synechocystis sp. PCC 6803 and AphC (coded by all2699) from Nostoc sp. PCC 7120. Both contain three GAF (cGMP phosphodiesterase, adenylyl cyclase and FhlA protein) domains (GAF1, GAF2 and GAF3). The respective full-length, truncated and cysteine point-mutated genes were expressed in Escherichia coli together with genes for chromophore biosynthesis. The resulting chromoproteins were analyzed by UV-visible absorption, fluorescence and circular dichroism spectroscopy as well as by mass spectrometry. RGS shows a red-green photochromism (λ(max) = 650 and 535 nm) that is assigned to the reversible 15Z/E isomerization of a single phycocyanobilin-chromophore (PCB) binding to Cys528 of GAF3. Of the three GAF domains, only GAF3 binds a chromophore and the binding is autocatalytic. RGS autophosphorylates in vitro; this reaction is photoregulated: the 535 nm state containing E-PCB was more active than the 650 nm state containing Z-PCB. AphC from Nostoc could be chromophorylated at two GAF domains, namely GAF1 and GAF3. PCB-GAF1 is photochromic, with the proposed 15E state (λ(max) = 685 nm) reverting slowly thermally to the thermostable 15Z state (λ(max)  = 635 nm). PCB-GAF3 showed a novel red-orange photochromism; the unstable state (putative 15E, λ(max) = 595 nm) reverts very rapidly (τ ~ 20 s) back to the thermostable Z state (λ(max) = 645 nm). The photochemistry of doubly chromophorylated AphC is accordingly complex, as is the autophosphorylation: E-GAF1/E-GAF3 shows the highest rate of autophosphorylation activity, while E-GAF1/Z-GAF3 has intermediate activity, and Z-GAF1/Z-GAF3 is the least active state.
74.

Diverse two-cysteine photocycles in phytochromes and cyanobacteriochromes.

red violet Cyanobacteriochromes Phytochromes Background
Proc Natl Acad Sci USA, 28 Jun 2011 DOI: 10.1073/pnas.1107844108 Link to full text
Abstract: Phytochromes are well-known as photoactive red- and near IR-absorbing chromoproteins with cysteine-linked linear tetrapyrrole (bilin) prosthetic groups. Phytochrome photoswitching regulates adaptive responses to light in both photosynthetic and nonphotosynthetic organisms. Exclusively found in cyanobacteria, the related cyanobacteriochrome (CBCR) sensors extend the photosensory range of the phytochrome superfamily to shorter wavelengths of visible light. Blue/green light sensing by a well-studied subfamily of CBCRs proceeds via a photolabile thioether linkage to a second cysteine fully conserved in this subfamily. In the present study, we show that dual-cysteine photosensors have repeatedly evolved in cyanobacteria via insertion of a second cysteine at different positions within the bilin-binding GAF domain (cGMP-specific phosphodiesterases, cyanobacterial adenylate cyclases, and formate hydrogen lyase transcription activator FhlA) shared by CBCRs and phytochromes. Such sensors exhibit a diverse range of photocycles, yet all share ground-state absorbance of near-UV to blue light and a common mechanism of light perception: reversible photoisomerization of the bilin 15,16 double bond. Using site-directed mutagenesis, chemical modification and spectroscopy to characterize novel dual-cysteine photosensors from the cyanobacterium Nostoc punctiforme ATCC 29133, we establish that this spectral diversity can be tuned by varying the light-dependent stability of the second thioether linkage. We also show that such behavior can be engineered into the conventional phytochrome Cph1 from Synechocystis sp. PCC6803. Dual-cysteine photosensors thus allow the phytochrome superfamily in cyanobacteria to sense the full solar spectrum at the earth surface from near infrared to near ultraviolet.
75.

Genetically engineered light sensors for control of bacterial gene expression.

blue green red Cyanobacteriochromes Fluorescent proteins LOV domains Phytochromes Review
Biotechnol J, 7 Jun 2011 DOI: 10.1002/biot.201100091 Link to full text
Abstract: Light of different wavelengths can serve as a transient, noninvasive means of regulating gene expression for biotechnological purposes. Implementation of advanced gene regulatory circuits will require orthogonal transcriptional systems that can be simultaneously controlled and that can produce several different control states. Fully genetically encoded light sensors take advantage of the favorable characteristics of light, do not need the supplementation of any chemical inducers or co-factors, and have been demonstrated to control gene expression in Escherichia coli. Herein, we review engineered light-sensor systems with potential for in vivo regulation of gene expression in bacteria, and highlight different means of extending the range of available light input and transcriptional output signals. Furthermore, we discuss advances in multiplexing different light sensors for achieving multichromatic control of gene expression and indicate developments that could facilitate the construction of efficient systems for light-regulated, multistate control of gene expression.
Submit a new publication to our database